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Abstract. Performance data can be complex and potentially high dimensional.
Further, it can be collected in multiple, independent domains. For example, one
can measure code segments, hardware components, data structures, or an applica-
tion’s communication structure. Performance analysis and visualization tools re-
quire access to this data in an easy way and must be able to specify relationships
and mappings between these domains in order to provide users with intuitive,
actionable performance analysis results.
In this paper, we describe a data model that can represent such complex perfor-
mance data and we discuss how this model helps us to specify mappings between
domains. We then apply this model to several use cases both for data acquisition
and how it can be mapped into the model, and for performance analysis and how
it can be used to gain insight into an application’s performance.

1 Motivation

High Performance Computing (HPC) application developers are facing increasing com-
plexity in supercomputer architectures as well as increasing complexity in the simula-
tions that run on them. Modern HPC machines have deep memory hierarchies, complex
network topologies, and accelerators such as GPUs and many-core chips. Applications
use adaptively refined domain decompositions [11,3,6] and require complex coupling
between disparate physics for scale-bridging. To understand these complexities and
their interactions, developers must rely on tools for detailed performance information,
or they will not be able to optimize their codes. Moreover, measurements must be pre-
sented clearly and intuitively to enable actionable insights.

Performance tools have a bad track record in this respect. While they can collect a
wide range of performance data and do so efficiently, the data reported by the tools is
often very low-level and demands detailed system knowledge from the developer. Some
tools, like Scalasca [23] or PerfExpert [5], try to close this gap by presenting higher level
analysis results, but such tools are often limited by prior knowledge about potential
bottlenecks that had to be coded into the tools; the detection of new bottlenecks or
performance problems is often not possible, since it requires an in-depth understanding
of code properties and performance data.

One fundamental problem with current tools is that data are displayed in a manner
closely related to the way they were measured. While this is straightforward from a
tool perspective, it often does not match the intuition of the developer and is hard to
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understand. For example, counts of cache misses or branch mispredictions are collected
using hardware counters, then displayed on a per-core basis or, at best, mapped to source
code. Their relationship to application physics, however, is left for users to infer.

We are addressing this issue with a data model that allows tool developers to a)
abstract measurements as values in independent data domains, b) define mappings be-
tween domains to describe data transformations and c) use data mapped into more intu-
itive domains for the visualization of performance information. We build on top of our
previous work that proposed a simplified and limited three domain model [16] and we
base our model on discussions at a recent Dagstuhl seminar, which discussed the fun-
damentals of performance visualization [4]. Combined, this enables us to build a new
generation of tools that provides developers with intuitive performance visualizations
and allows them to gain insight into the performance of complex systems.

We are currently developing an architecture for multi-domain performance analy-
sis, from data acquisition that is capable of gathering data from the entire software stack
(including application level information), to data storage and queries, to novel visual-
ization tools that utilize this information and are able to make use of the multi-domain
nature of the data. In this paper we present three case studies: the use of hardware to
simulation domain mappings, a tool to enable topological views of network data, and
a tool to track data movements on NUMA systems. In all cases, the ability to map
data from one domain into another for analysis and visualization was instrumental in
extracting and understanding the insights necessary for performance optimization.

The remainder of this paper is organized as follows: Section 2 discusses how current
tools collect and visualize data and how in some cases this does not match the intuition
the user would like to see. We then briefly discuss our previous model [16] and its
shortcomings. Based on these observations, we formulate the basics of a generalized
model in Section 3 and then introduce an architecture to implement this model on large
scale systems in Section 4. In Section 5 we present three case studies showing how the
concept of cross-domain analysis can help in detecting performance problems, before
we conclude in Section 6.

2 Tools and Their Data Domains

Performance analysis is a well established area in High Performance Computing (HPC)
and many tools have been built and are in active use on HPC systems. Examples in-
clude Open|SpeedShop [17] and TAU [18], two general performance analysis frame-
works; HPCToolkit [14], specializing in sampling based performance analysis; Vam-
pir [15] and Jumpshot [24] for the analysis of communication traces; or mpiP [22] and
ompP [9], two profilers for MPI and OpenMP communication respectively. These tools
enable users to collect a wide variety of performance measurements based on timing
information or using hardware performance counters exposing execution characteris-
tics in the underlying system. In all cases, performance measurements are either tied to
the physical hardware they were collected in or to execution objects, such as processes
or threads, as defined by the programming model. We refer to this as the measurement
domain.
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While the information available is vast, it is also very low-level and requires sub-
stantial effort by a performance analyst to interpret the data and to convert the infor-
mation into actionable insights. This has lead to the development of tools that aim at
automating performance analysis by detecting common bottleneck conditions, rather
than displaying raw performance information. The APART project [8] was among the
first to formally define a catalogue of bottlenecks. Tools like Scalasca [23] or PerfEx-
pert [5] use such information to search and identify predefined bottleneck patterns.

This approach, though, is naturally limited to existing, well-understood bottlenecks.
While this is an important class of problems, new problems, including those caused by
emerging architectures and applications, cannot be detected. Those will always require
some manual analysis and will have to be done in close collaboration between a perfor-
mance analyst and the actual application developer.

2.1 Collection vs. Analysis/Visualization Domain

For the latter group, the application developers, though, the information is not repre-
sented in an intuitive manner. One of the main reasons for this is that most tools deliver
performance analysis results in the domains they were collected in. For example, hard-
ware performance counters are shown per core ID or MPI message traffic is shown
per MPI rank. Both are arbitrary spaces that have no intuitive meaning for the devel-
oper when taken alone. Developers are more familiar with different domains, like the
application domain, e.g., the 2D or 3D domain of a physical phenomena that is being
simulated, or the communication structure implemented on top of the MPI rank space.

While we cannot directly measure performance data in these intuitive domains, we
can map data from a measurement domain into a (potentially) different visualization or
analysis domain 3. This decouples these two domains: data can be measured in arbitrary
domains where it is available, while the user picks the, possibly different, domain in
which she wants to see the data. This provides tools with a new flexibility that gives
developers a novel way to interpret the data and thereby characterize the performance
of their applications.

2.2 The HAC Model

The HAC (Hardware–Application–Communication) model, which we introduced in
our previous work [16], was a first attempt to characterize and abstract this concept
of decoupling the collection from the visualization domain. This model defined three
domains, which we saw as the three most important domains, as well as mappings be-
tween them. This is illustrated in Figure 1. The three domains were: H — the hardware
domain, which can be used to represent the physical elements of a machine, like cores
or network links, and which is used to measure hardware-related data like cache misses,
floating point operations or number of packet sent over a link; A — the application do-
main in which the application’s data resides, e.g., the simulated structure in a numerical
simulation; and C — the communication domain, which is used to abstract the commu-
nication between processes or threads within an application.

3 We will use these two terms interchangeably in the remainder of the paper.
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Figure 1. Domains and Mappings in the HAC model.

Each of these domains has its own properties and is associated with its own anal-
ysis and visualization techniques. Mappings between the domains can therefore help
widen the number of analysis and visualization techniques on the data collected in any
of the three domains and can make data collected in two different domains comparable.
A straightforward example, which we will discuss in more detail in Section 5.1, is a
mapping from the hardware to the application domain that can help attribute perfor-
mance data collected on hardware resources to the sections of simulation data, which
are computed by those resources.

2.3 Missing Elements in the HAC Model

While the HAC model provides the intended abstractions and enables us to provide
users with the intended new insights, it only included three very specific data domains.
Information on data structures and memory distributions is not included, and the source
code and time domains are handled separately and are not part of the model. Reasoning
about them is a special case, limiting the scope of possible analyses.

Further, we treated mappings as static properties, which only holds for simple, non-
adaptive cases. Codes with dynamic data and execution, such as Adaptive Mesh Re-
finement codes (AMR) [11,3,6], or dynamic environments, e.g., with thread migration
among hardware threads or process migration for load balance optimization, however,
need mappings that can be updated based on runtime events. This requires the online
collection and integration of meta data.
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3 A Generalized Data Model for Performance Tools

We present a generalization of the HAC model that overcomes the limitation described
above. This model was the result of discussions at a Dagstuhl seminar on Performance
Visualization [4] and has input from both the performance analysis and visualization
communities. Figure 2 provides a high-level sketch of the concepts explained below.

S0	  

S1	  

Sn	  
Domains/	  
Spaces	   Metrics	  

Metric0	  

Metric1	  

Metric2	  

Metricm	  

Vis0	  

Vis1	  

Visn	  

Vis.	  Techniques	  

Mappings	  

Measurements	  

Figure 2. A Generic Data Model to Capture Relationships Between Domains.

3.1 Spaces and Domains

At the core of the abstraction are a set of spaces. Each space is represented by a finite
set of tuples and has a crossproduct of types associated with it, such that each type
describes one element of the tuple. The number of spaces is not limited. Time and code
(represented by calling context trees [20]) are treated the same as any other space. A
domain is represented by a crossproduct of spaces.

3.2 Metrics

Metrics are units for individual data points. Examples are floating point operations and
MPI message counts. Metrics are typically represented by infinite sets, as not to restrict
what can be measured, but may in individual cases be a finite set of possible outcomes.

3.3 Measurements

Measurements capture the data acquisition in performance tools. They are represented
as mappings of a crossproduct of spaces, the domain the performance data is collected
in, to a metric, the set of possible values for this measurement. To make reasoning about
measurements easier, we define a measurement as a unique mapping or function, i.e.,
for each element of the measurement domain the measurement only maps to at most one
element in the metric set. If this is not the case for an experiment, e.g., in profiling tools



6

that provide multiple data points for each element of a space over time, the domain
needs to be modified to allow for this uniqueness, in the example by adding a space
representing real or virtual time to the crossproduct that forms the domain.

3.4 Mappings

A mapping, in the sense of the data model, maps one or more spaces (the origin domain)
to one or more spaces (the target domain). This allows measurements represented in the
target domain to be used in analysis operations on the origin domain. In general, we can
distinguish three types of mappings, which are also illustrated in Figure 3:

Origin	   Target	   Origin	   Target	   Origin	   Target	  

1:1	  Mappings	   1:N	  Mappings	   N:1	  Mappings	  

Figure 3. Types of Mappings.

– 1:1 Mappings: each element of the origin domain is mapped to exactly one element
of the target domain. An example of such a 1:1 mapping is the mapping between
node coordinates in a network to node IDs, since both domains describe the same
physical entity, but using different names or numbering schemes. 1:1 mappings
allow a direct translation of measurements in one domain to another.

– 1:N Mappings: each element of the origin domain is mapped to one or more ele-
ments of the target domain. An example for a such a 1:N mapping is the mapping
from node IDs in a system to process or MPI rank, since multiple ranks can be
on each node. When mapping measurements using a 1:N mapping, measurements
from all elements in target domain that map to a single element in the origin do-
main have to be combined using an aggregation operation. This can be as simple as
a sum or average, but can also be a more complex operation such as clustering or
statistical outlier detection.

– N:1 Mappings: each element of the origin domain is mapped to at most one, not
necessarily unique, element of the target domain. An example for a such a N:1
mapping is the mapping of MPI ranks to nodes in a system, since multiple ranks
can be on each node. When mapping measurements using a N:1 mapping, a mea-
surement from an element in the target domain must be distributed or spread over
all elements in the origin domain that map to it. The semantics of this operation
depends on the semantics of the domains. For example, the same measured value
could be attributed to each element in the origin domain in full, or the value could
be split up based on a distribution function.
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Mappings can further be combined into new mappings, allowing a translation over
multiple domains from an origin to a target domain. This could also lead to situations
in which multiple translations between two domains using different compositions, i.e.,
a different route through the set of available domains, are possible. Note, though, that
not all combined mappings between the same domains carry the same semantics. For
example, a 1:1 mapping between two domains may also be representable by a combi-
nation of a N:1 and a 1:N mapping, but the latter would include a loss of information by
first aggregating measured values before spreading them out again. Choosing the right
combination of mappings based on the intended analysis is therefore crucial.

4 An Architecture to Enable Cross-Domain Analysis

To implement this model, we require a performance analysis pipeline that allows us to
not only collect performance data, but also collect the necessary context to establish
the mappings between spaces. Both should then be stored in a scalable data store that
offers a flexible query API to tools so they can extract the data based on the intended
visualization domain. We are currently developing such an infrastructure and Figure 4
shows its high-level architecture.
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Figure 4. An Architecture for Multi Domain Performance Analysis.

4.1 Software Stack Instrumentation

To extract the necessary context that allows us to establish mappings between spaces,
we need access to information from the entire software stack, including from the OS and
adaptation decisions it makes, and from runtime systems and their abstractions estab-
lished for application programmers. For this purpose we need access to the necessary
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interfaces, such as the /proc/ interface in Linux, or access to machine specific in-
structions and APIs providing us with core and node information. On the programming
model side we need standardized mechanism to bridge the abstraction provided by the
model. For MPI, the standardized interfaces PMPI (the MPI Profiling Interface) and
MPI T, the newly defined MPI tool information interface [2], can provide the necessary
information, but other programming models and runtime systems do not provide the
necessary information through a standardized interface.

Over the last year, though, the tools working group in the OpenMP language com-
mittee has been developing a new interface that will allow tools to interface with any
OpenMP runtime and export the information necessary. This interface, OMPT [7], pro-
vides a series of routines to extract runtime information, e.g., to cleanly assemble call-
stacks, and to insert hooks for events of interest, such as the start of parallel regions
or tasks. Initial prototype implementations of OMPT are available on BlueGene/Q ma-
chines and Intel platforms. We are currently integrating OMPT into our tools.

4.2 Creating Context

In many cases, though, information provided transparently by runtimes is not sufficient
to provide all meta data needed to establish mappings. Many kinds of information are
application specific and we need application semantics to properly represent, capture,
and store them. Examples are program phases, associations of tasks and data struc-
tures, or application specific properties of an input deck. We therefore need an API that
enables developers to expose this information in an unobtrusive and tool-independent
way.

For this purpose, we have developed a context recording library that gives devel-
opers simple commands to annotate application source code and provide context infor-
mation through key/value pairs. The library then records this context information and
makes it available to performance data collection tools. The latter is done by provid-
ing a reference to a context information structure, which allows the context recording
library to maintain a highly efficient internal representation of the data. At program
termination, the library then writes this context information to disk, which later can be
extracted during the analysis phase.

Figure 5 shows a few code snippets illustrating how context annotation calls are
added to the application source code. In this example, one context key/value pair con-
sists of key iteration, which expresses the current iteration that the execution of the
target code is in. Developers can also define hierarchical annotations, as shown with the
phase annotation in the example.

4.3 A Distributed Data Store with Query Access

Once collected, data and metadata will be stored in a large and distributed data store to
make it available to tools, enabling queries across different data sources, runs, systems
and applications. Our initial implementation used for Boxfish [13] relies on simple, self-
describing text files, which capture information from multiple domains with a column
per measured metric. This data format has generally been very effective in order to
achieve the necessary cross-space connections, but naturally has its limits in terms of
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A n n o t a t i o n ( ” phase ” ) . b e g i n ( ” main ” ) ; / / phase=”main”

A n n o t a t i o n ( ” phase ” ) . b e g i n ( ” loop ” ) ; / / phase=”main / l oop ”
whi le ( i < c o u n t ) {

A n n o t a t i o n ( ” i t e r a t i o n ” ) . s e t ( i ) ;
d o s o m e t h i n g ( i ) ;

}
A n n o t a t i o n ( ” phase ” ) . end ( ) ; / / ends ”main / l oop ”
W r i t e r e s u l t s ( ) ;
A n n o t a t i o n ( ” phase ” ) . end ( ) ; / / ends ”main”

Figure 5. Example of source code context annotations

scalability and performance. We are therefore currently analyzing both SQL and non-
SQL based stores as possible alternatives.

One key aspect of the data store will be that it can execute complex queries, which
requires it to track existing mappings and apply them in a suitable order to achieve the
necessary transformations. The latter includes finding the right combination of map-
pings as well as the scheduling of necessary aggregation and spreading functions. If
multiple chains of mapping between targets and sources are available and are feasible,
the query API should first select a set of likely paths, e.g., ones without huge amounts
of data loss due to combining N:1 and 1:N mappings, and then, if ambiguity persists,
should forward the decision to the user.

4.4 Analysis and Visualization Tools

From this data store, tools can query performance data based on the visualization do-
main they prefer or need for their analysis. Generally speaking, we envision three types
of tools: a) performance visualization tools, such as Ravel [12], Boxfish [13] and com-
munication visualizations as the one by Sigovan et al. [19], b) analysis tools that pre-
process the data and only deliver reduced performance analysis results, or c) tools that
can autonomously use the information for tuning, such as Active Harmony [21].

5 Case Studies

In the following we show the advantages and capabilities of our multi-domain approach
using three case studies.

5.1 Hardware to Simulation Domain Mappings

To demonstrate how our new abstract data model described above can be instantiated,
we first show a straightforward example from a CfD simulation at LLNL, which we
previously analyzing using the HAC model [16], and show how it can be represented
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in the new, more general model. In this experiment, we simulate an ablator driving a
shock into an aluminum section containing a void, producing a jet of aluminum. The
simulation results are from a 12 hour run using a 2D grid running on 256 (8x32) cores
of a Linux based cluster with nodes consisting of four Quad-Core AMD processors
each. The interconnecting network is Infiniband and we use the MVAPICH MPI imple-
mentation. Figures 6(b) and 6(c) show the results of the simulation using nine selected
timesteps in regular intervals sorted from left to right. The figures clearly show the
aluminum jet on the left side as well as the created shockwave traveling from top to
bottom.

Figure 6(a) shows the instantiation of the data model for this experiment: in total
we have three domains: the 2D application domain (defined by two spaces for X and
Y coordinates) representing the physical structure being simulated, in this case the alu-
minum shock wave; the MPI rank domain (defined by a single space holding the rank
ID), in which most tools operated; and the hardware domain (defined by three spaces,
one for each dimension of the machine structure), describing the structure of the ma-
chine and its node architecture. During the experiment we collect metrics both in MPI
rank space (number of floating point operations and number of L1 cache misses) and
two physical properties of the shockwave (the material density itself and the material
velocity).

Each of the three domains has it’s own visualization technique associated with it:
the MPI rank space is represented by a simple bar graph (Figure 6(f) shows the number
of floating point operations natively collected in this domain), the application space is
shown using a 2D scientific visualization (Figures 6(b) and 6(c) show the two metrics
natively collected in this domain); and a representation of the hardware domain with
nodes, sockets, and cores is shown in Figure 6(g). Just looking at these native represen-
tations, the performance data collected in MPI rank space cannot easily be correlated
with any other measurement, which makes it hard to interpret the variations in floating
point operations that we observe.

Using mappings between the domains we can establish such a correlation: based
on our machine and MPI setup, we can assume a fixed mapping of MPI ranks to cores
and therefore we can map the MPI rank domain into the hardware domain (and vice
versa) using a static 1:1 mapping. We can further map the rank domain into the ap-
plication domain by following the domain decomposition: an MPI rank is mapped to
all elements in the application domain it is responsible for computing. In this case, the
domain decomposition splits up a dense matrix in a 8x32 grid, making each MPI rank
responsible for one of 256 sub-squares of the full problem. Since there are more data
points in the application domain, the mapping from MPI rank domain to the application
is a 1:N mapping, while the reverse direction is a N:1 mapping.

Figures 6(d) and 6(e) show the two metrics measured in the MPI rank domain
mapped into the 2D application domain and shown using the matching visualization
technique. Since multiple elements in the application domain map to a single MPI rank,
the associated N:1 mapping from the application domain to the rank domain spreads the
measurements of a single rank to all elements in application domain, resulting in a more
coarse grained representation. Nevertheless, this displays shows a clear correlation with
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the simulated physics in Figures 6(b) and 6(c) for both metrics, which wasn’t obvious
before in the MPI rank display.

The visualization of the L1 cache misses in Figure 6(e) shows a second phenomenon:
a series of ranks with high numbers of cache misses represented by dots on the right
side of the figure for each timestep, which overlays the physics, but does not seem to be
correlated. When we map the same data into the hardware domain (Figure 6(g)) we see
that each of these cores maps to the same core ID on each node and we tracked this phe-
nomena to the MPI library, which uses this core of aggregating node local information
for collective operations.

Using the two different mappings into two domains enabled us to distinguished
these two separate phenomena and what they correlate to. It also showed that they
need to be analyzed separately since they have two different sources: one related to the
physics being simulated, i.e., input dependent, and one related to the base architecture,
i.e., input independent.

5.2 Domain Mappings in Boxfish

In order to automate the analysis process described above, we have implemented a pro-
totype of the query and mapping functionality in the Boxfish toolset [13]. An annotated
screenshot of our tools with example mappings is shown in Figure 7.

The tool offers a range of visualization techniques, shown in the bottom left of the
figure. Our current implementation focuses mainly on visualization of communication
data, but it can be extended with plugins to other domains. The input data and its metrics
are shown in the top left window in the figure. Each table represents one measurement
domain and the elements below it show the various metrics available in that domain.

A user can select any visualization domain by dragging it into the main window.
The example shows a 3D visualization of a torus network, as used in Blue Gene/L and
P as well as Cray HPC systems. Once the display is activated, the user can select any
number of metrics available as input data and attempt a mapping of this data onto the
visualization domain, again by simply dragging the metric onto the display. At that time,
Boxfish searches all available mappings, provided through plugins into the tool, to see
if a mapping from the selected visualization to the selected input metrics and domain
can be established. If the mapping is unique, the data is simply displayed accordingly.
If multiple mappings are available, though, the tool presents this choice to the user. In
the example in the figure, the user drags a node metric onto the torus display. However,
since the tool also knows how to map node IDs to link IDs (since this is how link data is
measured on Blue Gene systems), Boxfish offers the user the choice of visualizing the
data on nodes or links. The user picks the intended one by dragging the data onto that
choice.

While the choice is clear to a human user in this case, the system cannot distin-
guish between these two choices without further semantic information. This shows the
generality of the approach, but also a shortcoming. We will investigate how to add se-
mantic information to reduce choices offered by Boxfish to reasonable mappings in
future work. In other examples, though, several choices do make sense (e.g., attributing
packets sent over a link can be to a link to show network traffic vs. to a node to show
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Figure 7. Multidomain visualization in Boxfish.

network load on a node). In these cases the system provides users with the necessary
flexibility to choose the option suitable for the intended analysis.

5.3 NUMA Optimizations with MemAxes

In addition to Boxfish, we started using the concept of domain mappings in other tools.
One example is MemAxes [10], a tool to visualize memory traffic in NUMA nodes. It
uses Intel’s Precise Event Based Sampling (PEBS) to sample all memory accesses and
their attributes, including latency, target address and memory hierarchy they hit. This
information is further enhanced with context information containing bowth source code
meta data (e.g., which element in which structure an address maps to) and machine
information (e.g., core ID to NUMA domain mappings). Figure 8 shows an overview
of the graphical user interface. The elements labeled with A show the application view
of the collected data, mapping it to data structures and source code. The view labeled
B shows a mapping of the collected data to the hardware architecture of the underlying
system: HW threads are aligned on the outer most ring, following by the — partially
shared — caches all the way to the two NUMA domains in the innermost circle. The
amount of communication between the layers is shown through the thickness of the
lines between the layers. Users can select only parts of the data being shown, which
updates the various views in the GUI. The graph in window labeled with C shows the
percentage of the data that is currently shown.

The selection can be done using a parallel coordinates view in the bottom most
window D. Each vertical bar (axis) represent one measurement on one metric (across
all spaces in which data is collected) and a single sample is drawn as a line between
all axes showing the value in that particular measurement for this sample. Users can
select arbitrary ranges on any of the shown measurements by marking a region of the
axis, which will then color all lines crossing the axis at that measurement red. This
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visualization shows how other measurements and spaces correlate to elements being
selected in the chosen space.

An example of how this can be used is shown in Figure 9: We ran LULESH [1], a
shock-hyrdo proxy application developed at LLNL on a NUMA system with 32 HW
threads split into two NUMA domains. The results of the default run are shown in
Figure 9(a). Using the tool, we selected all samples representing a continuous range
in the code’s main data structure (right bar) and observed the corresponding memory
traffic. As the architectural view clearly shows, the contiguous mapping of this data
structure matches the contiguous set of core IDs, but those are mapped in alternating
order to both NUMA nodes (second bar from the right). As a consequence, the system
experiences significant traffic between NUMA regions.

To optimize this behavior we rearrange the cores by alternating core IDs, shown in
Figure 9(b). As a result, consecutive ranges in the main data structure are now mapped
to core IDs in the same way they are in the NUMA domain. This lead to a performance
improvement of over 10%.

6 Conclusions

Performance analysis plays a critical role in optimizing codes on current and future
platforms. The ever increasing complexity of both system architectures and applications
makes this a difficult task and application developers rely on tools to provide them with
sufficient insights into the performance behavior of their applications. While many tools
exist and can provide a vast amount of data, the resulting information is often low-level
and hard to interpret. One reason for this is that information is displayed in domains in
which data was collected, but those domains are not necessarily the intuitive ones that
help application developers extract actionable insights.

In this work we introduced a generic data model that helps us describe independent
data domains for both the collection of measurements and their visualization/analysis.
By establishing mappings between domains we can then translate data collected in one
domain into another and use this to show performance data in other domains, to make
data comparable across domains, and provide intuitive visualizations in domains that
application developers are familiar with. This concept has already been helpful in many
cases and we showed three of them in this paper: mapping of performance data to the
application domain of a CfD simulation helped us correlate performance data with the
underlying physics being simulated and to distinguish those effects from a machine
related phenomena; the Boxfish tool enabled us to understand network performance
data by mapping it to the underlying physical network architecture, in our case a 3D
torus; and correlating memory access information from the machine architecture and the
application data structures allowed us to identify and correct excessive NUMA accesses
for a shock-hydro code.

In summary, the new data model and its ability to map performance data across
domains enables us to create a new generation of tools that provide more insights into an
application’s performance and provide this information in an intuitive way that enables
optimizations. It is also flexible enough to carry forward to next generation systems
and applications, incl. new programming models and abstractions by integrating more
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Figure 8. The Memaxis User Interface.

(a) Initial version of LULESH: memory accesses across NUMA domains.

(b) LULESH after memory access optimizations.

Figure 9. Using MemAxes to expose memory traffic in NUMA systems.
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diverse domains and measurement techniques. Equally important, it provides a way
to formalize performance data to enable a closer interaction between the performance
analysis community on one side and the data visualization and analysis communities
on the other, which will allows for an easier transfer of tools and techniques.
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10. Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav Bhatele, Ilir Jusufi, Peer-Timo
Bremer, and Bernd Hamann. Dissecting on-node memory access performance: A semantic



17

approach. In Proceedings of the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14. IEEE Computer Society, November
2014. LLNL-CONF-658626.

11. Richard D. Hornung and Scott R. Kohn. Managing application complexity in the sam-
rai object-oriented framework. Concurrency and Computation: Practice and Experience,
14(5):347–368, 2002.

12. Katherine Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele, Martin
Schulz, and Bernd Hamann. Combing the Communication Hairball: Visualizing Large-Scale
Parallel Execution Traces using Logical Time. In Proceedings of IEEE InfoVis, InfoVis ’14,
November 2014.

13. Aaditya G. Landge, Joshua A. Levine, Katherine E. Isaacs, Abhinav Bhatele, Todd Gam-
blin, Martin Schulz, Steve H. Langer, Peer-Timo Bremer, and Valerio Pascucci. Visualizing
network traffic to understand the performance of massively parallel simulations. In IEEE
Symposium on Information Visualization (INFOVIS’12), Seattle, WA, October 14-19 2012.
LLNL-CONF-543359.

14. J. Mellor-Crummey, R. Fowler, and G. Marin. HPCView: A tool for top-down analysis of
node performance. The Journal of Supercomputing, 23:81–101, 2002.

15. W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: Visualiza-
tion and analysis of MPI resources. Supercomputer, 12(1):69–80, 1996.

16. M. Schulz, J.A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci. Interpreting performance
data across intuitive domains. In Parallel Processing (ICPP), 2011 International Conference
on, pages 206–215, September 2011.

17. Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya, and Scott
Cranford. Open|speedshop: An open source infrastructure for parallel performance analysis.
Scientific Programming, 16(2-3):105–121, 2008.

18. S. Shende and A. D. Malony. The tau parallel performance system. International Journal of
High Performance Computing Applications, ACTS Collection Special Issue, 2005.

19. Carmen Sigovan, Chris W. Muelder, and Kwan-Liu Ma. Visualizing large-scale parallel
communication traces using a particle animation technique. Computer Graphics Forum,
32(3):141–150, June 2013.

20. Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey. Scalable identifica-
tion of load imbalance in parallel executions using call path profiles. In Proceedings of
IEEE/ACM Supercomputing ’10, November 2010.

21. Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: Towards au-
tomated performance tuning. In In Proceedings from the Conference on High Performance
Networking and Computing, pages 1–11, 2003.

22. Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling. http:
//mpip.sourceforge.net.

23. Felix Wolf, Brian Wylie, Erika Abraham, Daniel Becker, Wolfgrang Frings, Karl Fuerlinger,
Markus Geimer, Marc-Andre Hermanns, Bernd Mohr, Shirley Moore, and Zoltan Szebenyi.
Usage of the SCALASCA Toolset for Scalable Performance Analysis of Large-Scale Parallel
Applications. In Proceedings of the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany,
july 2008.

24. O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scalable Performance Visualization with
Jumpshot. International Journal of High Performance Computing Applications, 13(3):277–
288, 1999.


